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Penetrant diffusion in frozen polymer matrices: A finite-size scaling study
of free volume percolation
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The diffusion of penetrant particles in frozen polymer matrices is investigated by means of Monte Carlo
simulations of the bond fluctuation model. By applying finite-size scaling to data obtained from very large
systems it is demonstrated that the diffusion process takes place on a percolating free volume cluster describ-
able by a correlated site percolation model which falls into the same universality class as random percolation.
The diverging correlation length entails a pronounced dependence of the diffusion constant on the size of the
simulated system. It is shown that this dependence is appreciable for a wide range of parameters around the
transition.[S1063-651X%96)05810-2

PACS numbses): 61.25.Hq, 66.30-h, 64.60.Ak, 61.43.Fs

I. INTRODUCTION Thirdly, it is conceivable that systematic errors occur as a
result of the finite size of the simulated systems. There ap-
The knowledge of the diffusion constant of small pen-pears to be a tendency for simulations to overestimate the
etrant molecules in polymers is of crucial importance fordiffusion constan{5,6,8—1Q. One possible explanation for
many technological applications, such as the design of bathis is the following. The mean square displacement
rier materials, filters and gas-separating membranes, or tH&’)(t) of the penetrant particles typically shows a crossover
controlled release of drugd—3]. In general, the diffusion from a regime of anomalous diffusion with a diffusion expo-
constant is strongly dependent on the chemical species boffehta<1 at intermediate times to a regime of normal dif-
of the diffusant and the matrix material. The choice of suit-fusion witha=1 at large time$9,14,13. The diffusion ex-
able materials, as well as the design of new matrix subPonenta is defined by
stances, would be greatly facilitated if it were possible to
predict macroscopic transport properties from the chemical

compasition of the materlals_. various t_heoret|cal modelﬁ? the atomistically detailed simulations this crossover typi-
have been developed that aim to describe the transport of v occurs when the penetrant has on average diffused over
small molecules through polymers, see Réfs-4] for re- 5 gistance comparable to the sizeof the simulation box,
views. However, these approaches either do not incorporaigyardiess of temperature or penetrant species. Clearly, dif-
the structural details of the polymers on an atomistic level, 0fsion must necessarily become normal as, due to the peri-
they rely on model parameters that cannot be determineggic houndary conditions that are applied, the particle begins
within the framework itself. to average over the periodic images of the simulation box. It
Computer simulations, on the other hand, provide the opis therefore to be expected that in these studies the crossover
portunity, at least in principle, to compute transport properto normal diffusion was induced by the periodic boundary
ties directly from the microscopic structure of the substancegonditions and does not reflect the true physical properties of
involved. Molecular dynamics simulatiofiS—13] and simu-  the matrix. In a larger system the crossover length scale
lations based on transition state thedfiy,15 have been would have been larger, which would have resulted in a
successful in reproducing the qualitative dependence of themaller value of the measured diffusion constant.
diffusion behavior on the size of the penetrant and on the For these reasons it would be desirabléapidentify the
chemical structure of the matrix. Absolute values of the dif-physical mechanism that gives rise to anomalous diffusion in
fusion constants, however, appear to be much harder to réhese systems, arid) determine the true physical crossover
produce. length as a function of external parameters such as tempera-
To some extent this may be attributed to an insufficienture and polymer density. To this end it is necessary to sys-
knowledge of the correct parametrization of the force fieldgematically vary the system size, and to simulate much larger
used in the modeling of the investigated substances. Seeystems. Also, a large number of statistically independent
ondly, there may be difficulties in obtaining a sufficient dis- configurations are necessary to obtain a sufficient disorder
order average. Chemically detailed simulations typicallyaverage if the regimes of anomalous and normal diffusion
only have access to a very limited number of independenare to be identified unambiguously. Neither molecular dy-
sample configurations of rather small size of the order ohamics nor transition state theory based simulations are pres-
30 A, and strong statistical variations can be observed beently capable of meeting these requirements.
tween configurations, see, e.g., Rdfb5]. In the present paper we therefore address the above ques-
tions in a simplified model. The first simplification we intro-
duce is to sacrifice chemical detail and simulate a coarse-
*Electronic address: hweber@chaplin.physik.uni-mainz.de grained lattice model that describes the universal physical
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properties of a whole class of polymeric materials. We have
carried out Monte Carlo simulations of the bond fluctuation
model [16,17] which achieves a high degree of efficiency
while at the same time allowing for a large number of poly-
mer conformations thus providing a close approximation to
the continuous case. With this model, large polymer melt
configurations were generated and thoroughly equilibrated at .
a variety of temperatures, densities, and system sizes.

As a further simplification, we then froze all polymer de-
grees of freedom before penetrants were inserted and the =
penetrant diffusion behavior was monitored. Experimentally, FIG. 1. Bond-fluctuation modelschematic projected represen-
Fhls corrt_aspo_nds to a sudden deep quench of the system frot%lion). Gray squares denote effective monomers of the polymer
its equilibration temperature to a temperature where pens

. ' e chains, and black squares denote penetrant particles.
etrants are still mobile but penetrant mobility is decoupled a P P

from the mobility of the matrix. We thus assume a complete iz exciuded volume interactions. The excluded volume per
separation of polymer and penetrant time scales. The,onomer is (2)% wherea is the lattice constant. Each ef-
frozen-in malrix is taken as an approximation of the 9'ass34‘ective monomer of this coarse-grained model corresponds to
state of the polymer where virtually no rearrangement is posy yiece of a chemical realistic chain consisting of about five
sible on the time scale of observatift8]. t?ackbone bondgl9,27, i.e., to a length of roughly 5 A.

This e}pproach allows us to generate a large number o Along the chains adjacent molecules are connected by
well equilibrated and statistically independent sample con,qq4q \which are chosen from a restricted set of bond vectors
figurations of very large sizes that could not be ObtameCEomprising the following classes of vectof&.0,0, [2,1,0,
o_therwise. From a thorough ]‘inite-size scaling study _of thi 2,1,1, [2,2,1, [3,0,0, [3,1,0. The square brackets denote
§|mple system important insights can be 9@'”?0' Wh'(_:h_ arg| possible permutations and sign inversions of the compo-
likely to be of relevance for a proper appreciation of finite- nong The set of allowed bond vectors was chosen such as to
size effects in the simulation of more realistic polymer- . o o crossing of bonds impossible in the course of the
penetrant systems. . . . random hopping dynamics of the monomers. The bond

Our theoretical considerations and numerical results cag,sging constraint is thus implemented implicitly and need
be sgmmanzgd as fOIIC_)WS' Long-time diffusion in a.frozen not be checked during the simulation. The chosen set of bond
matrix is possible only if the free volume of the matrix per- yeciors contains 108 vectors of five different lengths and

colates. The polymer matrix undergoes a percolation transiy o s for 87 different bond angles and therefore represents a
tion which can be temperature or density driven. Measureg|oge approximation to the continuous case. The range of

{nent_t.of fthl(la .C;'t'iﬁl ex_ponerln_tt raltlos cf:onﬂrmst.thatl theavailable bond lengths2b= /10 mirrors the fluctuations in
ransition fafls into the universality class of conventionalran-y, onq.tg-end distance of a subchain in a real polymer

dom percolation. The .Ieng.th spale of the crossover frorTQNhich are due to its torsional degrees of freedom. More de-
anomalous to normal diffusion increases dramatically as the., . " ihe “philosophy” of the model are given in Ref
transition is approached. In matricasthe percolation tran- [19] '

sition penetrant diffusion is anomalous on all length scales: This model, athermal or in combination with a suitable

A Iarge crossover length entails a pronoynced dep.enden.ce Pfamiltonian, has recently been successfully applied to the
the diffusion constant on the system SIZ€. Our SImUI"’mor@imulation of single chain$l6], statics and dynamics of
show that at fixed polymer volume fractiah the crossover olymer melts[20], polymer mixtured21,27], wetting phe-
length is appreciable, and thus finite-size effects are likely t omena[23)] polyr'ner brushe§24] block’ cobolymers{zs]

occur, for a wide range of temperatures around the transitiorhnd the glass transition in polymef@6]. Although the

The.paper IS organlzed as follows. The bond fluctuafuor}nodel does not represent any information on the smallest
model 1S descrlb_ed in Sec. Il. In Sec. lll we give atheoret'callength scales present in chemical polymers, it faithfully re-
analysis of the_ d'ffus'of‘ of penetrant partl_cl_es through frozerbroduces their universal medium and large scale properties.
polymer matrices. This analysis is verified by computer), particular, the model has been shown to reproduce well
simulations the results of which are presented in Sec. IV. 'ﬁhe static pr(’Jperties of dense polymer méRs].
summary and outlook are given in Sec. V. Preliminary studies showed qualitatively that penetrant

diffusion possesses a pronounced dependence on the stiff-
Il. MODEL ness of the polymer chains. In order to investigate this effect
more systematically the following Hamiltonian was intro-

In the present study the bond fluctuation mode,17]is  duced
used to describe the polymer matrix and the penetrants. It is
constructed on a simple cubic lattice in three dimensions. _ 2
Periodic boundary conditions are applied throughout. FigureH({b}’{a}) —b%,sfb(b‘ bo) +an2wese(,cos9(1+cocose).

1 shows a projected schematic representation. Polymers are 2
modeled as chains of effective monomers. In this study, the

number of effective monomers per chain was chosen to b&he temperaturéenergy scale is fixed by setting, to unity.
N=20. Each effective monomer consists of a cube of eighiThe values of the remaining parameters were set to
lattice points. Effective monomers interact with each otherby=0.86, ¢,=0.67, andcy=0.03 which leads to a favoring
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of short bonds and stretched chains. The choice of these o

values was guided by experience gained by mapping the NONPERCOLATIN critical

bond fluctuation model onto chemically realistic polymers P faepolation

[19127_| ““““ -------------- o
We have simulated systems of a linear dimension ofupto [ R ’

L =190 lattice constants. According to general expectations

from the mapping onto realistic polymer$9,27] this corre-

sponds to sizes of up to roughly 400 A. The largest of these

systems consisted of around 430 000 monomers. The simu-

line

lines of const. p

0.5 ¢

highp

lation of systems of this size is constrained by high demands [~ PERCOLATING
on both computer memory and the computing time required 0 |
to equilibrate and propagate the systems. The present study 0 04'81 - T

required a total of about one thousand CPU hours on an IBM
RS 6000/370 workstation.

. . . FIG. 2. Sch tic ph di f f | lation i
Polymer matrices are prepared in the following way. Us- G. 2. Schematic phase diagram of free volume percolation in

ing the configurational bias algorithf2s] polymers are sto- the inverse temperature—volume fraction plane. The fine dashed
'ng Igurati : gor poly lines are lines of constant free volume, which corresponds to the

Chg.‘c’“(ﬁ"y grcl)Véndlntol the Slmutla“.o? bof[(.l ?ﬁhe(;ma”yd ?jUt occupation probabilityp in conventional percolation. The filled
subject to excluded volume constraints until tn€ desIred 0ens; o5 mark the two critical points determined quantitatively by

sity has been reached. The temperature is then set to t@ﬁnulation
desired valudl and the sample is equilibrated in the canoni- '
cal ensemble using the slithering snake algorif28i. Thor-  ume of the matrix consists of distinct clusters, and during the
ough equilibration is ensured by propagating the systems fasntire walk each penetrant particle is confined to the cluster
ten times the time required for the radius of gyration to reactyn which it started. The diffusion behavior is, therefore, de-
its equilibrium value. Depending on the system size, up tQermined by the static percolation properties of the free vol-
one thousand statistically independent configurations pefme clusters. The occupied sites in the conventional site per-
system size are generated to ensure good statistical averagsiation problem correspond to the sites of free volume
ing. Configurations are assumed to be statistically indeperyetween the polymer chains that are accessible to the pen-
dent for the purposes of the static percolation analysis aftegrants. At fixed equilibration temperatuFethe free volume
propagation of the chains over several radii of gyration.shoyld undergo a percolation transition as a function of the
Propagation is carried out either canonically or grand canonigensity. Expressed in terms of the volume fractiproccu-
cally. During grand-canonical simulations the configura-piaq py the polymer chains, the free volume should percolate
tional bias algorithm[28] is used for chain insertion and ¢, yolume fractionsbelowa critical value. .
deletion in order to achieve appreciable acceptance ratés.  owever, in contrast to conventional site percolation, the
The polymer configurations thus generated are theRpatia| arrangement of the sites is not random. The presence
quenchedo absolute zero, i.e., all polymer degrees of free-of the polymer chains leads to local correlations between the
dom are frozen in. The frozen configurations are subjected tjias of free volume: the sites are locally aligned due to the
two types of analysisli) a static analysis of the free volume ¢qonneciivity of the chains. In this way, channels are formed
accessible to the penetrant, afig) diffusion of penetrant \\hich should facilitate percolation as compared to the ran-
particles through the matrix. These analyses will be deyom case.
scribed in more detail below. No polymer motion takes place Comparing polymer configurations of the same polymer

during any part of the analysis. volume fractiong but of different equilibration temperatures

Penetrants are modeled as cubes of eight lattice sites, i., 5 |ower temperature will lead to stiffer chains and thus to
the same size as an effective monomer. They interact with, o pronounced channels of free volume. This, in turn,

the polymer matrix solely through excluded volume interac-shomd result in a greater chance of finding a percolating

tions. As shown below, these monomer penetrants typically ser. For fixed polymer volume fractiah the free volume

exhil_:»it a distinct re_gime of anomalous diffusion. Penetrants, 4,14 thus undergot@mperaturedriven percolation transi-
are inserted only into free volume clusters that percolatetion with the percolating phase locatedTat T
c

This scenario was chosen because glassy polymer mem- tpo phase diagram of this percolation problem in the
bra:/r:/eshcan or|1ly be pg(;meaéted alﬁng percollatlng clusteri.' FT,(b) plane should therefore consist of a critical percolation
e have also considered another type of penefrant whiciy,, separating a percolating phase at low value§ afnd

occupigs only a _single lattice site, but for these penerants ng onq 5 nonpercolating phase at high values. In other words,
appremabl_e regime of anomalous diffusion COUI.d pe de;[ e critical polymer volume fractiog. should be a decreas-
tected. This demonstrates that not only the quantitative, bL1 g function of the equilibration temperatufe A schematic
also the qualitative diffusion behavior strongly depends Or}epresentation of the expected phase diagram is shown in
the size of the penetrant. Since in the present context we a >

mainly concerned with the role of anomalous diffusion we
will in the remainder of the paper concentrate on monomeg;

penetrants only.

The correlations between the sites are expected to be of
ite range related to the excluded volume correlation length
in the melt[30]. On larger length scales two monomers have
no apparent memory of belonging to the same chain which
leads to the well-known Gaussian behavior of chains in the
Penetrant diffusion is modeled as a random walk alongnelt. Therefore, the present correlated percolation scenario
the static free volume between the polymers. The free volshould fall into the same universality class as conventional

Ill. THEORETICAL BACKGROUND
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random percolation. The present situation is in close analogits critical exponent is zero since in the infinitely large sys-
to percolation of correlated Ising clusters in the paramagnetitem P possesses a discontinuous jump at the transition point
phase31,37. from P,=0 in the disordered phase By=1 in the percolat-
The central signature of a percolation transition is theing phasd35]. Thus measurements &(T) andP(¢) for
power-law divergence of the percolation correlation lengtha range of system sizes make it possible to provide evi-
£, which is defined33] via the exponential decay of the pair dence for the phase diagram suggested above.
connectedness function, or, equivalently, as the average dis- The percolation analysis just given has the following im-
tance of two sites belonging to the same cluster. As the pemplications for the diffusion behavior of the penetrant mol-
colation point is approached,diverges with some exponent ecules. Percolation clusters have fractal structure on length
v scales smaller than the correlation lengthand are Euclid-
ean (homogeneoyson larger length scale§37]. Conse-
Ex|el ™, quently, diffusion on percolation clusters is anomalous on
) ) ) . short length and time scales, and normal on long scales
where € is a suitable parameter expressing the separat|o[\38,3g|. The same type of behavior should therefore be ex-
from the transition; usuallye=p—p.. One important con- pected for the present model. The crossover lerRi.
sequence of this divergence is the particular behavior of Obéeparating the two regimes should scale as the percolation
servables in systems of finite site which is described by  qrrejation length¢, see Ref[33]. This implies that as the
finite-size scalind33—39. For an observable whose be- arameterd and ¢ are varied such as to approach the criti-
hawor near the perC(.)I.atlon point in the infinite system isg, percolation lineRg,ssWill increase without bound. In a
described by some critical exponeptthrough system right at criticality, diffusion will be anomalous on all
length scales. In a simulation of a system of given dize

xer|el, there will thus always be a range of valuesTofand ¢ for
the finite-size scaling relation reads which the true physical crossover lend®, s exceeds the
system size, and where the crossover will occur prematurely
L when the mean square displacement becomes of the order of
X(L,&)x g XX E) (3  the system size. An estimate of the width of this region, and

thus of the importance of this effect, has been obtained by
X is the scaling function forx which tends to unity for simulations of the penetrant dynamics to be described below.

L/é—o, and tends to (/&) X/* for L/é—0. For a finite
system at the critical point, whete/é=0, we thus have IV. NUMERICAL RESULTS

X(L, &)oL X", (4) A. Static analysis

On the basis of the above finite-size scaling consider-

Once a transition point has been located, this relation can bations we have first carried out a static percolation analysis
used to check whether finite-size scaling holds, and thus tof large numbers of polymer configurations of different sys-
obtain evidence of a second-order phase transition. It catem sizes in the range=31, . . .,190. In each configuration
also be used to determine the critical exponent rgtio for ~ we identify all clusters of free volume accessible to the pen-
observablex. Critical exponent ratios obtained in this way etrant and determine which of these clusters percolate. Per-
provide evidence of the universality class of the transition. Incolating clusters are required to satisfy periodic boundary
the percolation case, suitable observables for this type afonditions. The spanning probabilit?s, the percolation
analysis are the percolation probabilRy i.e., the fraction of probability P and the average cluster si%& all defined in
sites that are part of a percolating cluster, which is the ordethe preceding section, are calculated as averages over statis-
parameter of the percolation transition, and the average clusically independent configurations.
ter sizeS, which plays the role of the susceptibility. Their  In a first series of simulations we generated polymer con-
critical exponents are denotgtland — vy, respectively. Note figurations in the canonical ensemble at the following values
that S is defined such as to include only contributions fromof the equilibration temperature(in units of ey):
nonpercolating cluster33]. T=0.415,0.439,0.470,0.502,0.533. The polymer volume

Furthermore, for an observablewith critical exponent fraction was kept constant a=0.5. At this volume frac-
x=0, relation (4) reduces tox(L,&)=const. This implies tion, the polymer systems possesses the characteristics of a
that curves ok as a function of a control parameter such asdense melf20]. A plot of the measured spanning probability
T or ¢, plotted for different system sizés should all inter- P(SL)(T) as a function of temperature for various system sizes
sect in a single intersection point at the critical value of theL is shown in Fig. 3. The curves for differeht clearly
control parameter. Such a plot is a very sensitive test of théntersect in a common intersection point. From the abscissa
divergence of the correlation length and furthermore pro- of this intersection point we obtain a transition temperature
vides an accurate tool for the location of the transition point(at ¢=0.5) of T,=0.481+0.001. Figure 4 shows that the
One class of observables with expongnt 0, which have spanning probabilities &t=0.481 are independent of system
frequently been used in this way, are the cumulants of theize within statistical errors. Figures 3 and 4 provide strong
order parameter and the energy, see, e.g., Bél. In the  evidence of a diverging correlation length, and thus of a
case of percolation, a generic observable with O is the  second-order phase transition.
spanning probability? which is defined as the probability Having determined the transition temperature we then
for a configuration to contain at least one percolating clustergenerated and analyzed further configurations of different
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FIG. 3. Spanning probabiliti? as a function of temperature for
various system sizek. The polymer volume fraction ig=0.5. FIG. 5. Percolation probabilit (order parametgrand average
The temperature scale is set by the parameters of the Hamiltoniasluster size S (susceptibility at the critical point
(¢=0.5,T=0.481) as functions of system site a is the lattice
constant. The dashed lines denote the results of least squares fits to

system sizes af.. Double-logarithmic plots of the percola-
a power law.

tion probability P and the average cluster si3as functions
of the system size are shown in Fig. 5. The data are weltase of random percolation, due to the high cost of generat-
described by power laws according (#. Least-squares fits ing statistically independent polymer configurations.
yield estimates of the critical exponent ratiog/v We then carried out a second series of simulations in or-
=0.46£0.01 andy/»=2.1+0.1. Within errors, the mea- der to determine the critical polymer volume fractigh in
sured exponent ratios agree with the theoretical values fathe athermal systeffi=o. The knowledge of this value is
random percolation in three dimensiong/»=0.466 and useful both as a reference point for comparison with other
ylv=2.05, cf. Ref[33]. These findings support the expec- percolation scenarios and in order to check the prediction of
tation that the present correlated free volume percolation sceSec. 1l that the critical volume fraction decreases with in-
nario falls into the same universality class as random perccereasing equilibration temperature. Again, the intersection
lation. Note that a significant reduction of the error, or amethod was used to determigg. The chosen system sizes
determination of the absolute values 8f y, and v would  werelL =40, 64, 80, and 110. For each system size a single
require a computational effort very much larger than in thesimulation is sufficient to obtaifs as a function ofp if the
simulation is carried out at constant chemical potentiaind
constant volume, and the joint histogra),(Ps,N) is re-
corded. The histogramI/’L(Ps,N) at a different value of the
chemical potential’ can then be calculated without further
simulation by reweighting the measured histogram with
exp{(u'—u)N} and renormalizing the resuUld0]. From this,
(¢) and P are obtained by summation.
0.46 | T | One drawback of the histogram reweighting technique is
’ that for the large systems necessary to reach the scaling re-
Q_’” gime the density fluctuations become small, and, hence, the
0.45 'Y chemical potential or density range over which extrapolation
) ® is reliable is rather limitednote that the more sophisticated
multihistogram method goes some way towards alleviating
this problem[17]). The simple histogram method requires
some rough knowledge of the value of the critical chemical
potential. This is the reason why separate simulations were
0.43 , , , - carried out for each temperature during our first series of
0 50 100 150 200 simulations at constant polymer volume fracti¢nIn order
to obtain an estimate of a suitable value of the chemical
potential for the second simulation series we assumed that
the value ofP(£=) is universal, i.e., that it is the same for
FIG. 4. Spanning probabilit as a function of system sizeat  all critical points along the percolation line. This should be
(T=0.4814=0.5).a is the lattice constant. true under the finite-size scaling assumpt|@d] since all

047 | T

0.44 ¢

L [units of a]
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FIG. 6. Spanning probabilityo; at T= as a function of the
polymer volume fractiong for various system sizek. a is the FIG. 7. Mean square displacemeRrt of penetrant particles at
lattice constant. Both quantities are obtained by histogram extrapahe critical point (p=0.5,T=0.481) as a function of time a is the
lation. The vertical arrow marks the value 0§) at which the lattice constant. The dashed line has slope unity.
simulation was carried out.

_ d log(R?)

these critical points can be expected to belong to the same a(t)=
d logt

universality class. We carried out a brief preliminary simu-
lation of a small system with large fluctuations, extrapolated,
and read off the chemical potential at whiehhad the value
observed at the intersection point in the first series. Thigometimes called the “local diffusion exponen41,42, is
value was then used for the simulation of the various largephown in Fig. 8.
systems. The results are shown in Fig. 6. The vertical arrow On the very shortest time scales 10 the curve has a
marks the average density during the simulation. The figurslope of approximately unity, see Fig. 7. This is due to the
shows that our assumption indeed provided a reasonable géee diffusion of penetrants within the locally Euclidean
timate of the critical density. The values obtained Ryin  cavities of the polymer matrix. With increasing time the
the first and the second series, %02 and 0.4320.03 slope of the curve decreases, and the mean square displace-
agree within errors. ment crosses over to a regime of anomalous diffusion due to
Again, it is observed in Fig. 6 that all curves intersect in athe fractal structure of the free volume percolation cluster.
common point to high accuracy. For the critical polymer The crossover between these two regimes is very gradual and
volume fraction in the athermal system we obtain the valugxtends over more than five decades in time. This can be
$(T=)=0.4304+0.0003. The finite-size scaling analysis rationalized by assuming that on length scales of roughly
therefore allows us to determine this value with a relativeO(10) lattice constants the penetrant may have explored a
error of less than 1C°. ramified free volume cluster but has not yet been forced to
Both critical points thus determinedr £0.4814=0.5) retrace its path due to dead ends along the branches of the
and (T==,$=0.4304) are marked as filled circles in the cluster. Only after visiting enough dead ends of sufficiently
Schematic perco|ati0n phase diagram Of F|g 2. Varying |engthS the fI’aCta| nature Of the perCO|ating fl’ee VOI'
ume cluster becomes noticeable, leading to the anomalous
diffusion of the penetrant particle3].
. ] ] For times betweetr4x 10° MCS (Monte Carlo sweeps
~ We now turn to the numerical analysis of penetrant d'ffu'andtw5>< 10° MCS the local diffusion exponent(t) as-
sion. In order to give further support to our perw'at'onsumesaplateau value, showing that the true valueiafthe

analysis we measured the mean square displacement of thinitely large system has been reached. The height of the
penetrants in polymer matricest the critical point piateau is

(¢=0.5,T=0.481). The linear dimension of the samples

wasL =190. Three separate sets of walks were carried out to

obtain approximately the same resolution on all time scales. a=0.532+0.002. (6)
We used 120 statistically independent polymer configura-

tions each for the short and the medium length walks, and 55

independent configurations for the long walks. Each configuThis value agrees very well with the best known value of
ration contained 50 penetrant particles. The penetrant meamn=0.533+0.027 for conventional random percolation in
square displacement is shown double logarithmically as #ree dimensions, with diffusion taking place on percolating
function of time in Fig. 7, and its logarithmic derivative clusters only{42]. This finding gives strong additional sup-

: ©)

B. Penetrant diffusion
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FIG. 8. Local diffusion exponent (logarithmic derivative of ) )
the mean square displacemenat the critical point ¢ FIG. 9. Mean square displacemeRrt of penetrant particles at
=0.5T=0.481). (¢=0.5,T=0.415), i.e., off criticality, for various system sizes

as a function of timé. From top to bottom, the curves correspond

port to our percolation analysis. Finally, for times larger than© SyStem sizes.=31,40,61,72,86,120,190. The last three curves
t~5x10° MCS a second crossover occurs back to normai’Irtually coincide.a is the lattice constant,
diffusion. This is primarily induced by the periodic boundary , i i
conditions, but it may also be due to a finite crossover lengti <80 In this regime, the crossover length scBlg,sis to
since the critical temperature was known only approxi-very good approximation equal to the system dizevhich
mately. Note that the chosen system siz¢ 6f190 was just provides strong evidence that for these small systems the
sufficient for the plateau to become visible. anomalous-to-normal crossover is induced by the periodic

The relative magnitudes of the crossover lengthsand boundary conditions. For system sizes 80, on the other
the system sizé control the extent to which measured dif- hand,Rossand D are virtually size independent. In these
fusion constants are subject to finite-size effects. It is thus oferge systems the diffusion behavior directly reflects the
interest to know in absolute terms how far away from thestructure of the percolating cluster. However, a weak residual
transitionR,,ssbecomes appreciable. We have therefore carsize dependence can be observed eveh 080 because the
ried out a further simulation series in order to determine the
absolute value of the crossover lendrh,ssat a state space
point well off the transition. We chose a polymer volume 200 : - -
fraction of »=0.5 and a temperature 6¥=0.415. We mea- /
sured the penetrant mean square displacement in systems of d
different sizesL and determined the size-dependent cross- 150 | e
over length scalR{").. The crossover length scale in the 4
thermodynamic limit was estimated by increasing the system
size until R:). was clearly size independent. A maximum
system size oL =190 was used in order to obtain unambigu-
ous results. The measured mean square displacements are
shown in Fig. 9. They show the same qualitative behavior as
observed in other simulations, cf., e.g., Regf4]. From the
mean square displacement, the crossover point was deter-
mined as the intersection point of straight lines fit to the
curve in the anomalous and the diffusive regimes, respec- .
tively, see Fig. 9. The diffusion constant was obtained ac- 0 K . . .
cording to 0 50 100 150 200

L [units of 4]
(R%)

100 S

50 i e

R, . [units of a]
I.‘-I\
O
L J

t—x

FIG. 10. Crossover lengtiiR s at (¢=0.5T=0.415) as a

_ ) ) function of system siz&. Rg,ossWas determined from the intersec-
The resulting crossover lengths and diffusion constants argon of straight lines fit toR?(t) in the anomalous and the normal

shown in Figs. 10 and 11, respectively. Both quantities exregimes, see Fig. 9. The dashed line maks.=L. a is the lattice
hibit a pronounced size dependence for system sizesonstant.
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25 . . . penetrants was shown to be equal to the value known from
diffusion studies of three dimensional random percolation.
In contrast to random site occupancy the free volume in
20 Y ] the polymer matrix is locally correlated due to the connec-
tivity and stiffness of the surrounding chains. This correla-

8 tion is of small spatial range and can be controlled by a
= 415 | ; Hamiltonian for the intramolecular degrees of freedom that
N; ® changes the chain stiffness as a function of temperature. This
© leads to a critical line in the percolation phase diagram in the
2 10} 1 temperature-density plane. For the density and energy pa-
© @ rameters investigated the percolation transition occurred in
2 .. the fluid phase of the model, well separated from the glass
S o5 © ® 1 transition. As the two phenomena depend on temperature and
'6' density in different ways this need not be true for all param-

eter choices. In general, however, we are here dealing with

. ' . . two distinct phenomena. E.g., in the present model the free
0.00 0.011 0.02 ; 0.03 0.04 volume percolates at temperatures below the percolation

L [units of a ] transition, while in the free volume theory of the glass tran-

sition the liquidlike clusters ofpolymen particles percolate

at temperatures above the glass transition.

The bond fluctuation lattice model is known to represent
well the universal static properties of polymer melts. The
percolation analysis is conceptually not confined to the lat-
tice case. Various models of percolation in continuous space
have been investigated; for an overview see RE&f]. While

FIG. 11. Diffusion constanD at (¢=0.5,T=0.415) as a func-
tion of inverse system size™*. a is the lattice constant. Errors are
smaller than the size of the symbols.

percolation correlation lengtfy, which controls the crossover

Ifgngth Reross: 1S !tself Sllljbjeﬁt to'f|n|r:e—sr|lze rogndmg: IT. the the static continuum percolation exponents have been shown
inite systemsg is smaller than in the thermodynamic limit, 1, e equal to their lattice counterpafés], the dynamic

and it increases with increasing system size. This effect iy, ,nents differ. Their precise values depends on the choice
still remarkably strong even for the large systems investio¢ " the continuum mode[46]. In particular, the “Swiss

gated. We measured¢é=16.9:0.1 for L=80, and  pooqe" mode[45,46 would be suited to describe the per-

§=23.4i0.1forL=190. This accounts qualitatively for the colation of the free volume between the monomers of a

observed residual dependenceRyfossOn L. _ bead-spring polymer model in continuous space. In the
The fact that at the investigated state space poinigyiss cheese” model the anomalous diffusion exponent

(T=0.4154=0,5), i.e., about 15% below the transition , 5 ahout 139% smaller than in the 3D lattice cf48]. Thus
temperature, the crossover length in the thermodynamic limif,o effect of anomalous diffusion will be even more pro-

is still of the order of 80 lattice constants implies that over a4 nced in a continuum model. The qualitative picture ob-

large part of the phase diagram very large systems, and thygiyeq in our study is thus not an artefact of the choice of a
significant computing resources, are required for a correghttice model.

determination of the diffusion constant. Our simulations apply directly to real systems if studied at

constant volume. In a constant pressure experiment the in-
V. DISCUSSION crease in stiffness upon lowering the temperature will be
In this paper we analyzed in detail the reason for thecounteracted to some degree by the thermal expansion of the

occurrence of anomalous penetrant diffusion in polymer maSyStem. More important though is the effect of matrix mo-

trices as seen in a variety of atomistic modeling attempts oPi”ty Whi.Ch changes'the percolation problem from a static to
gas permeation through polymer membranes. Usually it dynamic one. I_n this case we e>_<pect a crossover from a low
these situations one is interested in the permeation propertié%mperature. reglr_ne_where_ matrix mobility IS low angl the
of glassy membranes. This question therefore typically inpenetrant diffusivity is dominated by the static properties of

volves a separation of matrix and penetrant time scales. | € matrix, to a _h|gh temperature regime where th? fluctua-
order to investigate the effects of finite system size on th lons of the matrix dynamically homogenize the epV|rqnment
extent of the anomalous diffusion regime and to ensure Sufgampled by the penefrant, and penetrant diffusivity is

ficient disorder averaging we chose to study a simple an&OUptled o the dynaTms of tr(;edmatnx_. At |ntefrr;1hed|ate tem-
computationally efficient lattice model which nonethelessPErAUres We Expect a rounded maximum of the crossover

captures the essential physics. With the separation of tim _ngth Sca"?-‘ separating anomalous_from normal penetrant
scales in mind the polymer matrix was completely frozen for iffusion. It is in this temperature region that the anomalous

computational expedience. In this limit the penetrant di1‘fu-dlfoSIOn seen in experimenid7] and atomistic simulations

sion is a dynamic analysis of the geometry of the free Vol_wiII be most pronounced. These issues will be analyzed in

ume. We analyzed in detail and with high statistical accuracﬁeta" in a forthcoming publicatiof48].
the finite-size scaling behavior of the free volume percola-
tion problem and showed that it belongs to the universality
class of random percolation. The diffusion exponent in the It is a pleasure to thank K. Binder for many stimulating
subdiffusive regime of the mean square displacement of thdiscussions, and M. Mier for help with technical aspects of
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