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The diffusion of penetrant particles in frozen polymer matrices is investigated by means of Monte Carlo
simulations of the bond fluctuation model. By applying finite-size scaling to data obtained from very large
systems it is demonstrated that the diffusion process takes place on a percolating free volume cluster describ-
able by a correlated site percolation model which falls into the same universality class as random percolation.
The diverging correlation length entails a pronounced dependence of the diffusion constant on the size of the
simulated system. It is shown that this dependence is appreciable for a wide range of parameters around the
transition.@S1063-651X~96!05810-2#

PACS number~s!: 61.25.Hq, 66.30.2h, 64.60.Ak, 61.43.Fs

I. INTRODUCTION

The knowledge of the diffusion constant of small pen-
etrant molecules in polymers is of crucial importance for
many technological applications, such as the design of bar-
rier materials, filters and gas-separating membranes, or the
controlled release of drugs@1–3#. In general, the diffusion
constant is strongly dependent on the chemical species both
of the diffusant and the matrix material. The choice of suit-
able materials, as well as the design of new matrix sub-
stances, would be greatly facilitated if it were possible to
predict macroscopic transport properties from the chemical
composition of the materials. Various theoretical models
have been developed that aim to describe the transport of
small molecules through polymers, see Refs.@1–4# for re-
views. However, these approaches either do not incorporate
the structural details of the polymers on an atomistic level, or
they rely on model parameters that cannot be determined
within the framework itself.

Computer simulations, on the other hand, provide the op-
portunity, at least in principle, to compute transport proper-
ties directly from the microscopic structure of the substances
involved. Molecular dynamics simulations@5–13# and simu-
lations based on transition state theory@14,15# have been
successful in reproducing the qualitative dependence of the
diffusion behavior on the size of the penetrant and on the
chemical structure of the matrix. Absolute values of the dif-
fusion constants, however, appear to be much harder to re-
produce.

To some extent this may be attributed to an insufficient
knowledge of the correct parametrization of the force fields
used in the modeling of the investigated substances. Sec-
ondly, there may be difficulties in obtaining a sufficient dis-
order average. Chemically detailed simulations typically
only have access to a very limited number of independent
sample configurations of rather small size of the order of
30 Å, and strong statistical variations can be observed be-
tween configurations, see, e.g., Ref.@15#.

Thirdly, it is conceivable that systematic errors occur as a
result of the finite size of the simulated systems. There ap-
pears to be a tendency for simulations to overestimate the
diffusion constant@5,6,8–10#. One possible explanation for
this is the following. The mean square displacement
^R2&(t) of the penetrant particles typically shows a crossover
from a regime of anomalous diffusion with a diffusion expo-
nenta,1 at intermediate times to a regime of normal dif-
fusion witha51 at large times@9,14,15#. The diffusion ex-
ponenta is defined by

^R2&}ta. ~1!

In the atomistically detailed simulations this crossover typi-
cally occurs when the penetrant has on average diffused over
a distance comparable to the sizeL of the simulation box,
regardless of temperature or penetrant species. Clearly, dif-
fusion must necessarily become normal as, due to the peri-
odic boundary conditions that are applied, the particle begins
to average over the periodic images of the simulation box. It
is therefore to be expected that in these studies the crossover
to normal diffusion was induced by the periodic boundary
conditions and does not reflect the true physical properties of
the matrix. In a larger system the crossover length scale
would have been larger, which would have resulted in a
smaller value of the measured diffusion constant.

For these reasons it would be desirable to~a! identify the
physical mechanism that gives rise to anomalous diffusion in
these systems, and~b! determine the true physical crossover
length as a function of external parameters such as tempera-
ture and polymer density. To this end it is necessary to sys-
tematically vary the system size, and to simulate much larger
systems. Also, a large number of statistically independent
configurations are necessary to obtain a sufficient disorder
average if the regimes of anomalous and normal diffusion
are to be identified unambiguously. Neither molecular dy-
namics nor transition state theory based simulations are pres-
ently capable of meeting these requirements.

In the present paper we therefore address the above ques-
tions in a simplified model. The first simplification we intro-
duce is to sacrifice chemical detail and simulate a coarse-
grained lattice model that describes the universal physical*Electronic address: hweber@chaplin.physik.uni-mainz.de
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properties of a whole class of polymeric materials. We have
carried out Monte Carlo simulations of the bond fluctuation
model @16,17# which achieves a high degree of efficiency
while at the same time allowing for a large number of poly-
mer conformations thus providing a close approximation to
the continuous case. With this model, large polymer melt
configurations were generated and thoroughly equilibrated at
a variety of temperatures, densities, and system sizes.

As a further simplification, we then froze all polymer de-
grees of freedom before penetrants were inserted and the
penetrant diffusion behavior was monitored. Experimentally,
this corresponds to a sudden deep quench of the system from
its equilibration temperature to a temperature where pen-
etrants are still mobile but penetrant mobility is decoupled
from the mobility of the matrix. We thus assume a complete
separation of polymer and penetrant time scales. The
frozen-in matrix is taken as an approximation of the glassy
state of the polymer where virtually no rearrangement is pos-
sible on the time scale of observation@18#.

This approach allows us to generate a large number of
well equilibrated and statistically independent sample con-
figurations of very large sizes that could not be obtained
otherwise. From a thorough finite-size scaling study of this
simple system important insights can be gained which are
likely to be of relevance for a proper appreciation of finite-
size effects in the simulation of more realistic polymer-
penetrant systems.

Our theoretical considerations and numerical results can
be summarized as follows. Long-time diffusion in a frozen
matrix is possible only if the free volume of the matrix per-
colates. The polymer matrix undergoes a percolation transi-
tion which can be temperature or density driven. Measure-
ment of the critical exponent ratios confirms that the
transition falls into the universality class of conventional ran-
dom percolation. The length scale of the crossover from
anomalous to normal diffusion increases dramatically as the
transition is approached. In matricesat the percolation tran-
sition penetrant diffusion is anomalous on all length scales.
A large crossover length entails a pronounced dependence of
the diffusion constant on the system size. Our simulations
show that at fixed polymer volume fractionf the crossover
length is appreciable, and thus finite-size effects are likely to
occur, for a wide range of temperatures around the transition.

The paper is organized as follows. The bond fluctuation
model is described in Sec. II. In Sec. III we give a theoretical
analysis of the diffusion of penetrant particles through frozen
polymer matrices. This analysis is verified by computer
simulations the results of which are presented in Sec. IV. A
summary and outlook are given in Sec. V.

II. MODEL

In the present study the bond fluctuation model@16,17# is
used to describe the polymer matrix and the penetrants. It is
constructed on a simple cubic lattice in three dimensions.
Periodic boundary conditions are applied throughout. Figure
1 shows a projected schematic representation. Polymers are
modeled as chains of effective monomers. In this study, the
number of effective monomers per chain was chosen to be
N520. Each effective monomer consists of a cube of eight
lattice points. Effective monomers interact with each other

via excluded volume interactions. The excluded volume per
monomer is (2a)3 wherea is the lattice constant. Each ef-
fective monomer of this coarse-grained model corresponds to
a piece of a chemical realistic chain consisting of about five
backbone bonds@19,27#, i.e., to a length of roughly 5 Å.

Along the chains adjacent molecules are connected by
bonds which are chosen from a restricted set of bond vectors
comprising the following classes of vectors:@2,0,0#, @2,1,0#,
@2,1,1#, @2,2,1#, @3,0,0#, @3,1,0#. The square brackets denote
all possible permutations and sign inversions of the compo-
nents. The set of allowed bond vectors was chosen such as to
make a crossing of bonds impossible in the course of the
random hopping dynamics of the monomers. The bond
crossing constraint is thus implemented implicitly and need
not be checked during the simulation. The chosen set of bond
vectors contains 108 vectors of five different lengths and
allows for 87 different bond angles and therefore represents a
close approximation to the continuous case. The range of
available bond lengths 2<b<A10 mirrors the fluctuations in
the end-to-end distance of a subchain in a real polymer
which are due to its torsional degrees of freedom. More de-
tails on the ‘‘philosophy’’ of the model are given in Ref.
@19#.

This model, athermal or in combination with a suitable
Hamiltonian, has recently been successfully applied to the
simulation of single chains@16#, statics and dynamics of
polymer melts@20#, polymer mixtures@21,22#, wetting phe-
nomena@23#, polymer brushes@24#, block copolymers@25#,
and the glass transition in polymers@26#. Although the
model does not represent any information on the smallest
length scales present in chemical polymers, it faithfully re-
produces their universal medium and large scale properties.
In particular, the model has been shown to reproduce well
the static properties of dense polymer melts@20#.

Preliminary studies showed qualitatively that penetrant
diffusion possesses a pronounced dependence on the stiff-
ness of the polymer chains. In order to investigate this effect
more systematically the following Hamiltonian was intro-
duced

H~$b%,$u%!5 (
bonds

eb~b2b0!
21 (

angles
eucosu~11c0cosu!.

~2!

The temperature~energy! scale is fixed by settingeb to unity.
The values of the remaining parameters were set to
b050.86,eu50.67, andc050.03 which leads to a favoring

FIG. 1. Bond-fluctuation model~schematic projected represen-
tation!. Gray squares denote effective monomers of the polymer
chains, and black squares denote penetrant particles.
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of short bonds and stretched chains. The choice of these
values was guided by experience gained by mapping the
bond fluctuation model onto chemically realistic polymers
@19,27#.

We have simulated systems of a linear dimension of up to
L5190 lattice constants. According to general expectations
from the mapping onto realistic polymers@19,27# this corre-
sponds to sizes of up to roughly 400 Å. The largest of these
systems consisted of around 430 000 monomers. The simu-
lation of systems of this size is constrained by high demands
on both computer memory and the computing time required
to equilibrate and propagate the systems. The present study
required a total of about one thousand CPU hours on an IBM
RS 6000/370 workstation.

Polymer matrices are prepared in the following way. Us-
ing the configurational bias algorithm@28# polymers are sto-
chastically grown into the simulation box athermally but
subject to excluded volume constraints until the desired den-
sity has been reached. The temperature is then set to the
desired valueT and the sample is equilibrated in the canoni-
cal ensemble using the slithering snake algorithm@29#. Thor-
ough equilibration is ensured by propagating the systems for
ten times the time required for the radius of gyration to reach
its equilibrium value. Depending on the system size, up to
one thousand statistically independent configurations per
system size are generated to ensure good statistical averag-
ing. Configurations are assumed to be statistically indepen-
dent for the purposes of the static percolation analysis after
propagation of the chains over several radii of gyration.
Propagation is carried out either canonically or grand canoni-
cally. During grand-canonical simulations the configura-
tional bias algorithm@28# is used for chain insertion and
deletion in order to achieve appreciable acceptance rates.

The polymer configurations thus generated are then
quenchedto absolute zero, i.e., all polymer degrees of free-
dom are frozen in. The frozen configurations are subjected to
two types of analysis:~i! a static analysis of the free volume
accessible to the penetrant, and~ii ! diffusion of penetrant
particles through the matrix. These analyses will be de-
scribed in more detail below. No polymer motion takes place
during any part of the analysis.

Penetrants are modeled as cubes of eight lattice sites, i.e.,
the same size as an effective monomer. They interact with
the polymer matrix solely through excluded volume interac-
tions. As shown below, these monomer penetrants typically
exhibit a distinct regime of anomalous diffusion. Penetrants
are inserted only into free volume clusters that percolate.
This scenario was chosen because glassy polymer mem-
branes can only be permeated along percolating clusters.

We have also considered another type of penetrant which
occupies only a single lattice site, but for these penetrants no
appreciable regime of anomalous diffusion could be de-
tected. This demonstrates that not only the quantitative, but
also the qualitative diffusion behavior strongly depends on
the size of the penetrant. Since in the present context we are
mainly concerned with the role of anomalous diffusion we
will in the remainder of the paper concentrate on monomer
penetrants only.

III. THEORETICAL BACKGROUND

Penetrant diffusion is modeled as a random walk along
the static free volume between the polymers. The free vol-

ume of the matrix consists of distinct clusters, and during the
entire walk each penetrant particle is confined to the cluster
on which it started. The diffusion behavior is, therefore, de-
termined by the static percolation properties of the free vol-
ume clusters. The occupied sites in the conventional site per-
colation problem correspond to the sites of free volume
between the polymer chains that are accessible to the pen-
etrants. At fixed equilibration temperatureT the free volume
should undergo a percolation transition as a function of the
density. Expressed in terms of the volume fractionf occu-
pied by the polymer chains, the free volume should percolate
for volume fractionsbelowa critical valuefc .

However, in contrast to conventional site percolation, the
spatial arrangement of the sites is not random. The presence
of the polymer chains leads to local correlations between the
sites of free volume: the sites are locally aligned due to the
connectivity of the chains. In this way, channels are formed
which should facilitate percolation as compared to the ran-
dom case.

Comparing polymer configurations of the same polymer
volume fractionf but of different equilibration temperatures
T, a lower temperature will lead to stiffer chains and thus to
more pronounced channels of free volume. This, in turn,
should result in a greater chance of finding a percolating
cluster. For fixed polymer volume fractionf the free volume
should thus undergo atemperature-driven percolation transi-
tion with the percolating phase located atT,Tc .

The phase diagram of this percolation problem in the
(T,f) plane should therefore consist of a critical percolation
line separating a percolating phase at low values ofT and
f and a nonpercolating phase at high values. In other words,
the critical polymer volume fractionfc should be a decreas-
ing function of the equilibration temperatureT. A schematic
representation of the expected phase diagram is shown in
Fig. 2.

The correlations between the sites are expected to be of
finite range related to the excluded volume correlation length
in the melt@30#. On larger length scales two monomers have
no apparent memory of belonging to the same chain which
leads to the well-known Gaussian behavior of chains in the
melt. Therefore, the present correlated percolation scenario
should fall into the same universality class as conventional

FIG. 2. Schematic phase diagram of free volume percolation in
the inverse temperature—volume fraction plane. The fine dashed
lines are lines of constant free volume, which corresponds to the
occupation probabilityp in conventional percolation. The filled
circles mark the two critical points determined quantitatively by
simulation.
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random percolation. The present situation is in close analogy
to percolation of correlated Ising clusters in the paramagnetic
phase@31,32#.

The central signature of a percolation transition is the
power-law divergence of the percolation correlation length
j, which is defined@33# via the exponential decay of the pair
connectedness function, or, equivalently, as the average dis-
tance of two sites belonging to the same cluster. As the per-
colation point is approached,j diverges with some exponent
n

j}ueu2n,

where e is a suitable parameter expressing the separation
from the transition; usually,e5p2pc . One important con-
sequence of this divergence is the particular behavior of ob-
servables in systems of finite sizeL, which is described by
finite-size scaling@33–35#. For an observablex whose be-
havior near the percolation point in the infinite system is
described by some critical exponentx through

x}ueux,

the finite-size scaling relation reads

x~L,j!}j2x/nXS Lj D . ~3!

X is the scaling function forx which tends to unity for
L/j→`, and tends to (L/j)2x/n for L/j→0. For a finite
system at the critical point, whereL/j50, we thus have

x~L,j!}L2x/n. ~4!

Once a transition point has been located, this relation can be
used to check whether finite-size scaling holds, and thus to
obtain evidence of a second-order phase transition. It can
also be used to determine the critical exponent ratiox/n for
observablex. Critical exponent ratios obtained in this way
provide evidence of the universality class of the transition. In
the percolation case, suitable observables for this type of
analysis are the percolation probabilityP, i.e., the fraction of
sites that are part of a percolating cluster, which is the order
parameter of the percolation transition, and the average clus-
ter sizeS, which plays the role of the susceptibility. Their
critical exponents are denotedb and2g, respectively. Note
thatS is defined such as to include only contributions from
nonpercolating clusters@33#.

Furthermore, for an observablex with critical exponent
x50, relation ~4! reduces tox(L,j)5const. This implies
that curves ofx as a function of a control parameter such as
T or f, plotted for different system sizesL, should all inter-
sect in a single intersection point at the critical value of the
control parameter. Such a plot is a very sensitive test of the
divergence of the correlation lengthj, and furthermore pro-
vides an accurate tool for the location of the transition point.
One class of observables with exponentx50, which have
frequently been used in this way, are the cumulants of the
order parameter and the energy, see, e.g., Ref.@36#. In the
case of percolation, a generic observable withx50 is the
spanning probabilityPs which is defined as the probability
for a configuration to contain at least one percolating cluster.

Its critical exponent is zero since in the infinitely large sys-
temPs possesses a discontinuous jump at the transition point
from Ps50 in the disordered phase toPs51 in the percolat-
ing phase@35#. Thus measurements ofPs(T) andPs(f) for
a range of system sizesL make it possible to provide evi-
dence for the phase diagram suggested above.

The percolation analysis just given has the following im-
plications for the diffusion behavior of the penetrant mol-
ecules. Percolation clusters have fractal structure on length
scales smaller than the correlation lengthj, and are Euclid-
ean ~homogeneous! on larger length scales@37#. Conse-
quently, diffusion on percolation clusters is anomalous on
short length and time scales, and normal on long scales
@38,39#. The same type of behavior should therefore be ex-
pected for the present model. The crossover lengthRcross
separating the two regimes should scale as the percolation
correlation lengthj, see Ref.@33#. This implies that as the
parametersT andf are varied such as to approach the criti-
cal percolation line,Rcrosswill increase without bound. In a
system right at criticality, diffusion will be anomalous on all
length scales. In a simulation of a system of given sizeL
there will thus always be a range of values ofT andf for
which the true physical crossover lengthRcross exceeds the
system size, and where the crossover will occur prematurely
when the mean square displacement becomes of the order of
the system size. An estimate of the width of this region, and
thus of the importance of this effect, has been obtained by
simulations of the penetrant dynamics to be described below.

IV. NUMERICAL RESULTS

A. Static analysis

On the basis of the above finite-size scaling consider-
ations we have first carried out a static percolation analysis
of large numbers of polymer configurations of different sys-
tem sizes in the rangeL531, . . .,190. In each configuration
we identify all clusters of free volume accessible to the pen-
etrant and determine which of these clusters percolate. Per-
colating clusters are required to satisfy periodic boundary
conditions. The spanning probabilityPs, the percolation
probability P and the average cluster sizeS, all defined in
the preceding section, are calculated as averages over statis-
tically independent configurations.

In a first series of simulations we generated polymer con-
figurations in the canonical ensemble at the following values
of the equilibration temperature~in units of eb):
T50.415,0.439,0.470,0.502,0.533. The polymer volume
fraction was kept constant atf50.5. At this volume frac-
tion, the polymer systems possesses the characteristics of a
dense melt@20#. A plot of the measured spanning probability
Ps
(L)(T) as a function of temperature for various system sizes

L is shown in Fig. 3. The curves for differentL clearly
intersect in a common intersection point. From the abscissa
of this intersection point we obtain a transition temperature
~at f50.5) of Tc50.48160.001. Figure 4 shows that the
spanning probabilities atT50.481 are independent of system
size within statistical errors. Figures 3 and 4 provide strong
evidence of a diverging correlation length, and thus of a
second-order phase transition.

Having determined the transition temperature we then
generated and analyzed further configurations of different
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system sizes atTc . Double-logarithmic plots of the percola-
tion probabilityP and the average cluster sizeS as functions
of the system size are shown in Fig. 5. The data are well
described by power laws according to~4!. Least-squares fits
yield estimates of the critical exponent ratiosb/n
50.4660.01 andg/n52.160.1. Within errors, the mea-
sured exponent ratios agree with the theoretical values for
random percolation in three dimensions,b/n50.466 and
g/n52.05, cf. Ref.@33#. These findings support the expec-
tation that the present correlated free volume percolation sce-
nario falls into the same universality class as random perco-
lation. Note that a significant reduction of the error, or a
determination of the absolute values ofb, g, andn would
require a computational effort very much larger than in the

case of random percolation, due to the high cost of generat-
ing statistically independent polymer configurations.

We then carried out a second series of simulations in or-
der to determine the critical polymer volume fractionfc in
the athermal systemT5`. The knowledge of this value is
useful both as a reference point for comparison with other
percolation scenarios and in order to check the prediction of
Sec. III that the critical volume fraction decreases with in-
creasing equilibration temperature. Again, the intersection
method was used to determinefc . The chosen system sizes
wereL540, 64, 80, and 110. For each system size a single
simulation is sufficient to obtainPs as a function off if the
simulation is carried out at constant chemical potentialm and
constant volume, and the joint histogramHm(Ps,N) is re-
corded. The histogramHm8 (Ps,N) at a different value of the
chemical potentialm8 can then be calculated without further
simulation by reweighting the measured histogram with
exp$(m82m)N% and renormalizing the result@40#. From this,
^f& andPs are obtained by summation.

One drawback of the histogram reweighting technique is
that for the large systems necessary to reach the scaling re-
gime the density fluctuations become small, and, hence, the
chemical potential or density range over which extrapolation
is reliable is rather limited~note that the more sophisticated
multihistogram method goes some way towards alleviating
this problem@17#!. The simple histogram method requires
some rough knowledge of the value of the critical chemical
potential. This is the reason why separate simulations were
carried out for each temperature during our first series of
simulations at constant polymer volume fractionf. In order
to obtain an estimate of a suitable value of the chemical
potential for the second simulation series we assumed that
the value ofPs(j5`) is universal, i.e., that it is the same for
all critical points along the percolation line. This should be
true under the finite-size scaling assumption@34# since all

FIG. 3. Spanning probabilityPs as a function of temperature for
various system sizesL. The polymer volume fraction isf50.5.
The temperature scale is set by the parameters of the Hamiltonian.

FIG. 4. Spanning probabilityPs as a function of system sizeL at
(T50.481,f50.5).a is the lattice constant.

FIG. 5. Percolation probabilityP ~order parameter! and average
cluster size S ~susceptibility! at the critical point
(f50.5,T50.481) as functions of system sizeL. a is the lattice
constant. The dashed lines denote the results of least squares fits to
a power law.
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these critical points can be expected to belong to the same
universality class. We carried out a brief preliminary simu-
lation of a small system with large fluctuations, extrapolated,
and read off the chemical potential at whichPs had the value
observed at the intersection point in the first series. This
value was then used for the simulation of the various larger
systems. The results are shown in Fig. 6. The vertical arrow
marks the average density during the simulation. The figure
shows that our assumption indeed provided a reasonable es-
timate of the critical density. The values obtained forPs in
the first and the second series, 0.4560.02 and 0.4360.03
agree within errors.

Again, it is observed in Fig. 6 that all curves intersect in a
common point to high accuracy. For the critical polymer
volume fraction in the athermal system we obtain the value
fc(T5`)50.430460.0003. The finite-size scaling analysis
therefore allows us to determine this value with a relative
error of less than 1023.

Both critical points thus determined (T50.481,f50.5)
and (T5`,f50.4304) are marked as filled circles in the
schematic percolation phase diagram of Fig. 2.

B. Penetrant diffusion

We now turn to the numerical analysis of penetrant diffu-
sion. In order to give further support to our percolation
analysis we measured the mean square displacement of the
penetrants in polymer matricesat the critical point
(f50.5,T50.481). The linear dimension of the samples
wasL5190. Three separate sets of walks were carried out to
obtain approximately the same resolution on all time scales.
We used 120 statistically independent polymer configura-
tions each for the short and the medium length walks, and 55
independent configurations for the long walks. Each configu-
ration contained 50 penetrant particles. The penetrant mean
square displacement is shown double logarithmically as a
function of time in Fig. 7, and its logarithmic derivative

a~ t !5
d log^R2&
d logt

, ~5!

sometimes called the ‘‘local diffusion exponent’’@41,42#, is
shown in Fig. 8.

On the very shortest time scalest,10 the curve has a
slope of approximately unity, see Fig. 7. This is due to the
free diffusion of penetrants within the locally Euclidean
cavities of the polymer matrix. With increasing time the
slope of the curve decreases, and the mean square displace-
ment crosses over to a regime of anomalous diffusion due to
the fractal structure of the free volume percolation cluster.
The crossover between these two regimes is very gradual and
extends over more than five decades in time. This can be
rationalized by assuming that on length scales of roughly
O(10) lattice constants the penetrant may have explored a
ramified free volume cluster but has not yet been forced to
retrace its path due to dead ends along the branches of the
cluster. Only after visiting enough dead ends of sufficiently
varying lengths the fractal nature of the percolating free vol-
ume cluster becomes noticeable, leading to the anomalous
diffusion of the penetrant particle@43#.

For times betweent'43105 MCS ~Monte Carlo sweeps!
and t'53106 MCS the local diffusion exponenta(t) as-
sumes a plateau value, showing that the true value ofa in the
infinitely large system has been reached. The height of the
plateau is

a50.53260.002. ~6!

This value agrees very well with the best known value of
a50.53360.027 for conventional random percolation in
three dimensions, with diffusion taking place on percolating
clusters only@42#. This finding gives strong additional sup-

FIG. 6. Spanning probabilityPs at T5` as a function of the
polymer volume fractionf for various system sizesL. a is the
lattice constant. Both quantities are obtained by histogram extrapo-
lation. The vertical arrow marks the value of^f& at which the
simulation was carried out.

FIG. 7. Mean square displacementR2 of penetrant particles at
the critical point (f50.5,T50.481) as a function of timet. a is the
lattice constant. The dashed line has slope unity.
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port to our percolation analysis. Finally, for times larger than
t'53106 MCS a second crossover occurs back to normal
diffusion. This is primarily induced by the periodic boundary
conditions, but it may also be due to a finite crossover length
since the critical temperature was known only approxi-
mately. Note that the chosen system size ofL5190 was just
sufficient for the plateau to become visible.

The relative magnitudes of the crossover lengthRcrossand
the system sizeL control the extent to which measured dif-
fusion constants are subject to finite-size effects. It is thus of
interest to know in absolute terms how far away from the
transitionRcrossbecomes appreciable. We have therefore car-
ried out a further simulation series in order to determine the
absolute value of the crossover lengthRcrossat a state space
point well off the transition. We chose a polymer volume
fraction off50.5 and a temperature ofT50.415. We mea-
sured the penetrant mean square displacement in systems of
different sizesL and determined the size-dependent cross-
over length scaleRcross

(L) . The crossover length scale in the
thermodynamic limit was estimated by increasing the system
size untilRcross

(L) was clearly size independent. A maximum
system size ofL5190 was used in order to obtain unambigu-
ous results. The measured mean square displacements are
shown in Fig. 9. They show the same qualitative behavior as
observed in other simulations, cf., e.g., Ref.@14#. From the
mean square displacement, the crossover point was deter-
mined as the intersection point of straight lines fit to the
curve in the anomalous and the diffusive regimes, respec-
tively, see Fig. 9. The diffusion constant was obtained ac-
cording to

D5 lim
t→`

^R2&
6t

. ~7!

The resulting crossover lengths and diffusion constants are
shown in Figs. 10 and 11, respectively. Both quantities ex-
hibit a pronounced size dependence for system sizes

L,80. In this regime, the crossover length scaleRcross is to
very good approximation equal to the system sizeL, which
provides strong evidence that for these small systems the
anomalous-to-normal crossover is induced by the periodic
boundary conditions. For system sizesL>80, on the other
hand,Rcross andD are virtually size independent. In these
large systems the diffusion behavior directly reflects the
structure of the percolating cluster. However, a weak residual
size dependence can be observed even forL>80 because the

FIG. 8. Local diffusion exponenta ~logarithmic derivative of
the mean square displacement! at the critical point (f
50.5,T50.481).

FIG. 9. Mean square displacementR2 of penetrant particles at
(f50.5,T50.415), i.e., off criticality, for various system sizesL,
as a function of timet. From top to bottom, the curves correspond
to system sizesL531,40,61,72,86,120,190. The last three curves
virtually coincide.a is the lattice constant.

FIG. 10. Crossover lengthRcross at (f50.5,T50.415) as a
function of system sizeL. Rcrosswas determined from the intersec-
tion of straight lines fit toR2(t) in the anomalous and the normal
regimes, see Fig. 9. The dashed line marksRcross5L. a is the lattice
constant.
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percolation correlation lengthj, which controls the crossover
lengthRcross, is itself subject to finite-size rounding. In the
finite systems,j is smaller than in the thermodynamic limit,
and it increases with increasing system size. This effect is
still remarkably strong even for the large systems investi-
gated. We measuredj516.960.1 for L580, and
j523.460.1 forL5190. This accounts qualitatively for the
observed residual dependence ofRcrosson L.

The fact that at the investigated state space point
(T50.415,f50,5), i.e., about 15% below the transition
temperature, the crossover length in the thermodynamic limit
is still of the order of 80 lattice constants implies that over a
large part of the phase diagram very large systems, and thus
significant computing resources, are required for a correct
determination of the diffusion constant.

V. DISCUSSION

In this paper we analyzed in detail the reason for the
occurrence of anomalous penetrant diffusion in polymer ma-
trices as seen in a variety of atomistic modeling attempts of
gas permeation through polymer membranes. Usually in
these situations one is interested in the permeation properties
of glassy membranes. This question therefore typically in-
volves a separation of matrix and penetrant time scales. In
order to investigate the effects of finite system size on the
extent of the anomalous diffusion regime and to ensure suf-
ficient disorder averaging we chose to study a simple and
computationally efficient lattice model which nonetheless
captures the essential physics. With the separation of time
scales in mind the polymer matrix was completely frozen for
computational expedience. In this limit the penetrant diffu-
sion is a dynamic analysis of the geometry of the free vol-
ume. We analyzed in detail and with high statistical accuracy
the finite-size scaling behavior of the free volume percola-
tion problem and showed that it belongs to the universality
class of random percolation. The diffusion exponent in the
subdiffusive regime of the mean square displacement of the

penetrants was shown to be equal to the value known from
diffusion studies of three dimensional random percolation.

In contrast to random site occupancy the free volume in
the polymer matrix is locally correlated due to the connec-
tivity and stiffness of the surrounding chains. This correla-
tion is of small spatial range and can be controlled by a
Hamiltonian for the intramolecular degrees of freedom that
changes the chain stiffness as a function of temperature. This
leads to a critical line in the percolation phase diagram in the
temperature-density plane. For the density and energy pa-
rameters investigated the percolation transition occurred in
the fluid phase of the model, well separated from the glass
transition. As the two phenomena depend on temperature and
density in different ways this need not be true for all param-
eter choices. In general, however, we are here dealing with
two distinct phenomena. E.g., in the present model the free
volume percolates at temperatures below the percolation
transition, while in the free volume theory of the glass tran-
sition the liquidlike clusters of~polymer! particles percolate
at temperatures above the glass transition.

The bond fluctuation lattice model is known to represent
well the universal static properties of polymer melts. The
percolation analysis is conceptually not confined to the lat-
tice case. Various models of percolation in continuous space
have been investigated; for an overview see Ref.@44#. While
the static continuum percolation exponents have been shown
to be equal to their lattice counterparts@45#, the dynamic
exponents differ. Their precise values depends on the choice
of the continuum model@46#. In particular, the ‘‘Swiss
cheese’’ model@45,46# would be suited to describe the per-
colation of the free volume between the monomers of a
bead-spring polymer model in continuous space. In the
‘‘Swiss cheese’’ model the anomalous diffusion exponent
a is about 13% smaller than in the 3D lattice case@46#. Thus
the effect of anomalous diffusion will be even more pro-
nounced in a continuum model. The qualitative picture ob-
tained in our study is thus not an artefact of the choice of a
lattice model.

Our simulations apply directly to real systems if studied at
constant volume. In a constant pressure experiment the in-
crease in stiffness upon lowering the temperature will be
counteracted to some degree by the thermal expansion of the
system. More important though is the effect of matrix mo-
bility which changes the percolation problem from a static to
a dynamic one. In this case we expect a crossover from a low
temperature regime where matrix mobility is low and the
penetrant diffusivity is dominated by the static properties of
the matrix, to a high temperature regime where the fluctua-
tions of the matrix dynamically homogenize the environment
sampled by the penetrant, and penetrant diffusivity is
coupled to the dynamics of the matrix. At intermediate tem-
peratures we expect a rounded maximum of the crossover
length scale separating anomalous from normal penetrant
diffusion. It is in this temperature region that the anomalous
diffusion seen in experiments@47# and atomistic simulations
will be most pronounced. These issues will be analyzed in
detail in a forthcoming publication@48#.
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